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Abstrrd. Relations B, = S-' (a )BS(a)  and B;' = S( - l)B,S( - 1). connecting the scale 
transformation (ST) and the Backlund transformation (BT) for the cylindrical Korteweg-de 
Vries equation, U ,  + 6uu, +U,,, + u/2r = 0, are obtained, One analogous relation between 
the BT and translation in x is also considered. 

In the study of solitons in multi-dimensional systems, one of the simplest, and thus 
most important, models is provided by the cylindrical Korteweg-de Vries equation 
first studied by Maxon and Viecelli (1974). They considered the propagation of 
radially ingoing acoustic waves of a plasma with cylindrical geometry. Under the 
assumptions of isothermal and stationary electrons, cold ions and small amplitude of 
the initial perturbation, they derived the cylindrical Kortewegae Vries equation for 
the dimensionless ion fluid velocity written as 

ut + 6uux + U,,, + u/2t = 0. (1) 

Here and in the following, a subscript represents partial differentiation. The analytical 
study of equation (1) has been carried out so far mainly via the inverse spectral 
transformation method by Calogero and Degasperis (1978). Very recently, a BT of 
equation (1) was obtained by Nimmo and Crighton (1981). In contrast to other known 
BT'S this BT is unusual in that the integration of the BT with zero as one solution does 
not generate a single-soliton. In this letter we set up three relations connecting this 
BT with the scale transformation and the operation of translation. It turns out that to 
derive the conservation laws, nonlinear superposition formulae and the soliton sol- 
utions from the BT must make use of the arbitrary parameter contained in the BT; so 
it is helpful to set up such relations. The analogous relations for the sine-Gordon, 
Korteweg-de Vries and nonlinear Schrodinger equations have been obtained by 
Steudel (1975, 1980). 

Let U = w,. We rewrite equation (1) as 

wt + 3(W, ) *  + w,,, + w/2t = 0. (2) 
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A Backlund transformation for equation (2) is 

( w ' +  w ) ,  = ( ~ + ~ ) / 6 r - f ( ~ ' -  w ) ~ ,  ( 3 a )  

( 3 b )  

B, : I 2  2 
( w ' -  w ) ,  = (wL  - w x X ) ( w ' -  w ) - ~ ( w , )  - ~ w : w ,  - 2 w ,  - ( w ' -  w ) / 2 r ,  

where w' and w are two solutions of equation (2) and a is an arbitrary parameter. 
The scale transformation S(A) is defined as 

S(A): x -* x' = A - ' x ,  t + ? = A -3t ,  w + G = A w .  (4) 

Obviously, equation (2) remains unchanged under the ST (4). Now we have: 

and, in particular, 

B, = S- ' (a)BlS(a) ,  ( 6 )  
where Ba/A and B1 are the BT (3) with the parameter taking the values u / A  and 1, 
respectively. 

Proof. Let W W .  (i = 0, 1) be two solutions of equation (2) and w ( ~ )  the result of 
under the BT (3). We use the formal notation 

ili;..i 1- (7) 

1 G!i)]=S(A) [ii,], ( i = O ,  1). (8) 

, W ( 0 )  

Using ST (4), we translate w ( ~ )  into G ( i )  (i = 0, I), respectively, and write formally 

It can easily be verified that 

( + ( I ) +  G(o)) i= ( ~ ' + U / A ) / ~ ~ - ~ ( G ( ~ ) - G ( O ) ) ~ ,  (9a) 

(+U)- %o,)i= ( G ( l ) i i  - G(o) i i ) (G( l ) -  ~ ( 0 ) ) - 2 ( G ( 1 ) i ) 2 - 2 G ( 1 ) i G ( 0 ) i  

-2(G~0)i)2-(2~)-1(G(1)-  G(O)), ( 9 6 )  
that is 

From (8) and (7), we have 
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therefore, 

B4 = S-'(A)&AS(A), 

which is the conclusion (3, and the proof of (6) is immediate by taking A = a  in 
equation ( 5 ) .  

Theorem 2. 

B,' S( - l)B,S( - l ) ,  

where B,' = (B4)- ' ,  the inverse transformation of the BT (3). 

Proof. It is easy to see that B,' = B-=, hence formula (12) is true by equation ( 5 ) .  

Remark. The transformation S( - 1) is discrete. This transformation maps components 
of the connection S'(A > 0) of the group of ST (4) on the component S-(A < 0) and 
conversely. 

Once more we specialise the BT (3) to a = 0, and it is easily seen that the relation 

B, = T-'(a)BoT(a) (13) 

T ( a ) :  x +i = x  +a, t + t = t ,  w + G = w ,  (14) 

holds, where T ( a )  is the translation defined by . 
under which equation (2) is also invariant. 
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